Intra-ER sorting of the peroxisomal membrane protein Pex3 relies on its luminal domain
نویسندگان
چکیده
Pex3 is an evolutionarily conserved type III peroxisomal membrane protein required for peroxisome formation. It is inserted into the ER membrane and sorted via an ER subdomain (the peroxisomal ER, or pER) to peroxisomes. By constructing chimeras between Pex3 and the type III ER membrane protein Sec66, we have been able to separate the signals that mediate insertion of Pex3 into the ER from those that mediate sorting within the ER to the pER subdomain. The N-terminal 17-amino acid segment of Pex3 contains two signals that are each sufficient for sorting to the pER: a chimeric protein containing the N-terminal domain of Pex3 fused to the transmembrane and cytoplasmic segments of Sec66 sorts to the pER in wild type cells, and does not colocalise with peroxisomes. Subsequent transport to existing peroxisomes requires the Pex3 transmembrane segment. When expressed in Drosophila S2R+ cells, ScPex3 targeting to peroxisomes is dependent on the intra-ER sorting signals in the N-terminal segment. The N-terminal segments of both human and Drosophila Pex3 contain intra-ER sorting information and can replace that of ScPex3. Our analysis has uncovered the signals within Pex3 required for the various steps of its transport to peroxisomes. Our generation of versions of Pex3 that are blocked at each stage along its transport pathway provides a tool to dissect the mechanism, as well as the molecular machinery required at each step of the pathway.
منابع مشابه
Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the ER
During de novo peroxisome biogenesis, importomer complex proteins sort via two preperoxisomal vesicles (ppVs). However, the sorting mechanisms segregating peroxisomal membrane proteins to the preperoxisomal endoplasmic reticulum (pER) and into ppVs are unknown. We report novel roles for Pex3 and Pex19 in intra-endoplasmic reticulum (ER) sorting and budding of the RING-domain peroxins (Pex2, Pex...
متن کاملDe novo peroxisome biogenesis revisited
We describe an alternative peroxisome formation pathway in yeast pex3 and pex19 cells, which relies on the existence of small peroxisomal remnants that are present in these cells. This groundbreaking result challenges current models prescribing that peroxisomes derive de novo from the ER. Our data also has major implications for the sorting pathway of specific peroxisomal membrane proteins (PMP...
متن کاملPEX16 contributes to peroxisome maintenance by constantly trafficking PEX3 via the ER
The endoplasmic reticulum (ER) is required for the de novo biogenesis of peroxisomes in mammalian cells. However, its role in peroxisome maintenance is unclear. To explore ER involvement in the maintenance of peroxisomes, we redirect a peroxisomal membrane protein (PMP), PEX3, to directly target to the ER using the N-terminal ER signal sequence from preprolactin. Using biochemical techniques an...
متن کاملHuman Peroxin PEX3 Is Co‐translationally Integrated into the ER and Exits the ER in Budding Vesicles
The long-standing paradigm that all peroxisomal proteins are imported post-translationally into pre-existing peroxisomes has been challenged by the detection of peroxisomal membrane proteins (PMPs) inside the endoplasmic reticulum (ER). In mammals, the mechanisms of ER entry and exit of PMPs are completely unknown. We show that the human PMP PEX3 inserts co-translationally into the mammalian ER...
متن کاملTail-anchored PEX26 targets peroxisomes via a PEX19-dependent and TRC40-independent class I pathway
Tail-anchored (TA) proteins are anchored into cellular membranes by a single transmembrane domain (TMD) close to the C terminus. Although the targeting of TA proteins to peroxisomes is dependent on PEX19, the mechanistic details of PEX19-dependent targeting and the signal that directs TA proteins to peroxisomes have remained elusive, particularly in mammals. The present study shows that PEX19 f...
متن کامل